Duane 3NE 2NR wrote:BBC - 17 March 2014 Last updated at 14:46 GMT
http://www.bbc.com/news/science-environ ... EET1074415Cosmic inflation: 'Spectacular' discovery hailedScientists say they have extraordinary new evidence to support a Big Bang Theory for the origin of the Universe.Researchers believe they have found the signal left in the sky by the super-rapid expansion of space that must have occurred just fractions of a second after everything came into being.
It takes the form of a distinctive twist in the oldest light detectable with telescopes.
The work will be scrutinised carefully, but already there is talk of a Nobel.
"This is spectacular," commented Prof Marc Kamionkowski, from Johns Hopkins University.
"I've seen the research; the arguments are persuasive, and the scientists involved are among the most careful and conservative people I know," he told BBC News.
The breakthrough was announced by an American team working on a project known as BICEP2.
This has been using a telescope at the South Pole to make detailed observations of a small patch of sky.
The aim has been to try to find a residual marker for "inflation" - the idea that the cosmos experienced an exponential growth spurt in its first trillionth, of a trillionth of a trillionth of a second.

Gravitational waves from inflation put a distinctive twist pattern in the polarisation of the CMB
Theory holds that this would have taken the infant Universe from something unimaginably small to something about the size of a marble. Space has continued to expand for the nearly 14 billion years since.
Inflation was first proposed in the early 1980s to explain some aspects of Big Bang Theory that appeared to not quite add up, such as why deep space looks broadly the same on all sides of the sky. The contention was that a very rapid expansion early on could have smoothed out any unevenness.
But inflation came with a very specific prediction - that it would be associated with waves of gravitational energy, and that these ripples in the fabric of space would leave an indelible mark on the oldest light in the sky - the famous Cosmic Microwave Background.
The BICEP2 team says it has now identified that signal. Scientists call it B-mode polarisation. It is a characteristic twist in the directional properties of the CMB. Only the gravitational waves moving through the Universe in its inflationary phase could have produced such a marker. It is a true "smoking gun".
"Detecting this signal is one of the most important goals in cosmology today. A lot of work by a lot of people has led up to this point," said Prof John Kovac of the Harvard-Smithsonian Center for Astrophysics and a leader of the BICEP2 collaboration.
The sensational nature of the discovery means the BICEP2 data will be subjected to intense peer review.
It is possible for the interaction of CMB light with dust in our galaxy to produce a similar effect, but the BICEP2 group says it has carefully checked its data over the past three years to rule such a possibility.
Other experiments will now race to try to replicate the findings. If they can, a Nobel Prize seems assured for this field of research.
Who this would go to is difficult to say, but leading figures on the BICEP2 project and the people who first formulated inflationary theory would be in the running.
"I can't tell you how exciting this is," said Dr Jo Dunkley, who has been searching through data from the European Planck space telescope for a B-mode signal.
"Inflation sounds like a crazy idea, but everything that is important, everything we see today - the galaxies, the stars, the planets - was imprinted at that moment, in less than a trillionth of a second. If this is confirmed, it's huge."
30 January 2015 Last updated at 20:54
Cosmic inflation: New study says BICEP claim was wrongBy Jonathan Amos
Science correspondent, BBC News
Scientists who claimed last year to have found a pattern in the sky left by the super-rapid expansion of space just fractions of a second after the Big Bang were mistaken.
The signal had been confounded by light emission from dust in our own galaxy.
This is the conclusion of a new study involving the US-led BICEP2 team itself.
A paper describing the findings has been submitted to the peer-reviewed journal Physical Review Letters.
A summary was briefly posted on an official French website on Friday before being pulled. A press release was then issued later in the day, although the paper itself is still not in the public domain at the time of writing.
A determination that BICEP2 was mistaken in its observations is not a major surprise.
The team itself had already made known its reduced confidence in the detection. But the new paper is significant because it is co-authored by "rival" scientists. These are the Planck Consortium of researchers, who were operating a European Space Agency (Esa) satellite that had also been seeking the same expansion pattern.
It was on the website of one of this satellite's instrument teams - its High Frequency Instrument (HFI) - that the outcome of the joint assessment was briefly leaked on Friday.
All the unified effort can do, according to the Esa press release, is put an upper limit on the likely size of the real signal.
This will be important for those future experiments that endeavour to make what would still be one of the great discoveries in modern science.
Issues of confusionBICEP2 used extremely sensitive detectors in an Antarctic telescope to study light coming to Earth from the very edge of the observable Universe - the famous Cosmic Microwave Background (CMB) radiation.
It was looking for swirls in the polarisation of the light.
This pattern in the CMB's directional quality is a fundamental prediction of "inflation" - the idea that there was an ultra-rapid expansion of space just fractions of a second after the Big Bang.
BICEP2 dataBICEP sought characteristic swirls in the polarisation of the Universe's oldest light
The twists, known as B-modes, are an imprint of the waves of gravitational energy that would have accompanied this violent growth spurt almost 14 billion years ago.
But the primordial signal - if it exists - is expected to be extremely delicate, and a number of independent scientists expressed doubts about the American team's findings as soon as they were announced at a press conference in March 2014.
At issue are a couple of complications. One is an effect where a "false" B-mode signal can be produced on the sky by the CMB passing through massive objects, such as huge galaxies. This so-called lensing effect must be subtracted.
But the second and most significant issue is the confusing role played by foreground dust in our galaxy.
Nearby spinning grains can produce an identical polarisation pattern, and this effect must also be removed to get an unambiguous view of the primordial background signal.
Bright dustThe BICEP2 team used every piece of dust information it could source on the part of the sky it was observing above Antarctica.
What it lacked, however, was access to the dust data being compiled by the Planck space telescope, which had mapped the microwave sky at many more frequencies than BICEP2.
This allowed Planck to more easily characterise the dust and discern its confounding effects. The Planck Consortium agreed to start working with BICEP2 back in the summer. The European group incorporated its high frequency information - where dust shines most brightly - and the US team added additional data collected by its next-generation instrument in Antarctica called the Keck Array.
However, the results of the joint assessment would suggest that whatever signal BICEP2 detected, it cannot be separated at any significant level from the spoiling effects. In other words, the original observations are equally compatible with there being no primordial gravitational waves.
"This joint work has shown that the detection of primordial B-modes is no longer robust once the emission from galactic dust is removed," Jean-Loup Puget, principal investigator of Panck's HFI instrument, said in the Esa statement.
"So, unfortunately, we have not been able to confirm that the signal is an imprint of cosmic inflation."
Ongoing questThis is not the end of the matter. Other experiments are still chasing the B-mode signal using a variety of detector technologies and telescopes.
These groups will have learnt from the BICEP experience and they will all devour Planck's latest batch of relevant data products when they start to be published next week.
Like any field of scientific endeavour, advances are continually being made.
One of the ironies of this story is that BICEP itself may now actually be best paced to make the ultimate detection of the cosmic inflation pattern.
Although the past year, with its quashed claim, will have been painful, the team will have new insights.
What is more, it can still boast world-leading scientists among its members, and detectors that are universally acknowledged to be top-notch.
Jonathan.Amos-INTERNET@bbc.co.uk and follow me on Twitter: @BBCAmos
http://www.bbc.co.uk/news/science-environment-31058529